Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.912
Filtrar
1.
Sci Rep ; 14(1): 7777, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565939

RESUMEN

Low-energy and efficient coal gangue sorting is crucial for environmental protection. Multispectral imaging (MSI) has emerged as a promising technology in this domain. This work addresses the challenge of low resolution and poor recognition performance in underground MSI equipment. We propose an attention-based multi-level residual network (ANIMR) within a super-resolution reconstruction model (ANIMR-GAN) inspired by CycleGAN. This model incorporates improvements to the discriminator and loss function. We trained the model on 600 coal and gangue MSI samples and validated it on an independent set of 120 samples. The ANIMR-GAN, combined with a random forest classifier, achieved a maximum accuracy of 97.78% and an average accuracy of 93.72%. Furthermore, the study identifies the 959.37 nm band as optimal for coal and gangue classification. Compared to existing super-resolution methods, ANIMR-GAN offers advantages, paving the way for intelligent and efficient coal gangue sorting, ultimately promoting advancements in sustainable mineral processing.

2.
Dev Psychopathol ; : 1-13, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38602091

RESUMEN

Exposure to early life adversity (ELA) is hypothesized to sensitize threat-responsive neural circuitry. This may lead individuals to overestimate threat in the face of ambiguity, a cognitive-behavioral phenotype linked to poor mental health. The tendency to process ambiguity as threatening may stem from difficulty distinguishing between ambiguous and threatening stimuli. However, it is unknown how exposure to ELA relates to neural representations of ambiguous and threatening stimuli, or how processing of ambiguity following ELA relates to psychosocial functioning. The current fMRI study examined multivariate representations of threatening and ambiguous social cues in 41 emerging adults (aged 18 to 19 years). Using representational similarity analysis, we assessed neural representations of ambiguous and threatening images within affective neural circuitry and tested whether similarity in these representations varied by ELA exposure. Greater exposure to ELA was associated with greater similarity in neural representations of ambiguous and threatening images. Moreover, individual differences in processing ambiguity related to global functioning, an association that varied as a function of ELA. By evidencing reduced neural differentiation between ambiguous and threatening cues in ELA-exposed emerging adults and linking behavioral responses to ambiguity to psychosocial wellbeing, these findings have important implications for future intervention work in at-risk, ELA-exposed populations.

3.
Anxiety Stress Coping ; : 1-14, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589982

RESUMEN

BACKGROUND: Marital goals reflect individuals' understanding of the purpose of marriage and could influence the dyadic interactions and satisfaction in intimate relationships. The current study examines how each partner's marital goals and the concordance of marital goals between the partners influence dating couples' relationship satisfaction through dyadic coping. METHOD: The sample consisted of 200 heterosexual dating couples from Hong Kong. Both partners completed a survey that assessed three types of marital goals, dyadic coping, relationship satisfaction, and other background variables. Path analysis was conducted to estimate the Actor-Partner Interdependence Model (APIM) with each partner's three types of marital goals and marital goal concordance between the two partners as the predictors, each partner's dyadic coping as the mediators, and each partner's relationship satisfaction as the outcomes. RESULTS: Women's dyadic coping significantly mediated the effects of women's companionship goals and marital goal concordance on both partners' marital satisfaction. Meanwhile, men's dyadic coping significantly mediated the effects of men's companionship goals and marital goal concordance on their own relationship satisfaction. CONCLUSION: The current study offered the first evidence supporting the importance of marital goals, the goal concordance between the partners, and dyadic coping in dating relationships.

4.
J Anim Ecol ; 2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38644583

RESUMEN

Ecological similarity plays an important role in biotic interactions. Increased body size similarity of competing species, for example, increases the strength of their biotic interactions. Body sizes of many exothermic species are forecast to be altered under global warming, mediating shifts in existing trophic interactions among species, in particular for species with different thermal niches. Temperate rocky reefs along the southeast coast of Australia are located in a climate warming hotspot and now house a mixture of temperate native fish species and poleward range-extending tropical fishes (vagrants), creating novel species assemblages. Here, we studied the relationship between body size similarity and trophic overlap between individual temperate native and tropical vagrant fishes. Dietary niche overlap between vagrant and native fish species increased as their body sizes converged, based on both stomach content composition (short-term diet), stable isotope analyses (integrated long-term diet) and similarity in consumed prey sizes. We conclude that the warming-induced faster growth rates of tropical range-extending fish species at their cool water ranges will continue to converge their body size towards and strengthen their degree of trophic interactions and dietary overlap with co-occurring native temperate species under increasing ocean warming. The strengthening of these novel competitive interactions is likely to drive changes to temperate food web structures and reshuffle existing species community structures.

5.
Front Artif Intell ; 7: 1200949, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38576459

RESUMEN

Identifying key statements in large volumes of short, user-generated texts is essential for decision-makers to quickly grasp their key content. To address this need, this research introduces a novel abstractive key point generation (KPG) approach applicable to unlabeled text corpora, using an unsupervised approach, a feature not yet seen in existing abstractive KPG methods. The proposed method uniquely combines topic modeling for unsupervised data space segmentation with abstractive summarization techniques to efficiently generate semantically representative key points from text collections. This is further enhanced by hyperparameter tuning to optimize both the topic modeling and abstractive summarization processes. The hyperparameter tuning of the topic modeling aims at making the cluster assignment more deterministic as the probabilistic nature of the process would otherwise lead to high variability in the output. The abstractive summarization process is optimized using a Davies-Bouldin Index specifically adapted to this use case, so that the generated key points more accurately reflect the characteristic properties of this cluster. In addition, our research recommends an automated evaluation that provides a quantitative complement to the traditional qualitative analysis of KPG. This method regards KPG as a specialized form of Multidocument summarization (MDS) and employs both word-based and word-embedding-based metrics for evaluation. These criteria allow for a comprehensive and nuanced analysis of the KPG output. Demonstrated through application to a political debate on Twitter, the versatility of this approach extends to various domains, such as product review analysis and survey evaluation. This research not only paves the way for innovative development in abstractive KPG methods but also sets a benchmark for their evaluation.

6.
J Comput Aided Mol Des ; 38(1): 18, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38573547

RESUMEN

Ligand-based virtual screening (LBVS) methods are widely used to explore the vast chemical space in the search of novel compounds resorting to a variety of properties encoded in 1D, 2D or 3D descriptors. The success of 3D-LBVS is affected by the overlay of molecular pairs, thus making selection of the template compound, search of accessible conformational space and choice of the query conformation to be potential factors that modulate the successful retrieval of actives. This study examines the impact of adopting different choices for the query conformation of the template, paying also attention to the influence exerted by the structural similarity between templates and actives. The analysis is performed using PharmScreen, a 3D LBVS tool that relies on similarity measurements of the hydrophobic/philic pattern of molecules, and Phase Shape, which is based on the alignment of atom triplets followed by refinement of the volume overlap. The study is performed for the original DUD-E+ database and a Morgan Fingerprint filtered version (denoted DUD-E+-Diverse; available in https://github.com/Pharmacelera/Query-models-to-3DLBVS ), which was prepared to minimize the 2D resemblance between template and actives. Although in most cases the query conformation exhibits a mild influence on the overall performance, a critical analysis is made to disclose factors, such as the content of structural features between template and actives and the induction of conformational strain in the template, that underlie the drastic impact of the query definition in the recovery of actives for certain targets. The findings of this research also provide valuable guidance for assisting the selection of the query definition in 3D LBVS campaigns.


Asunto(s)
Ligandos , Bases de Datos Factuales
7.
bioRxiv ; 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38562804

RESUMEN

Empirical studies reporting low test-retest reliability of individual blood oxygen-level dependent (BOLD) signal estimates in functional magnetic resonance imaging (fMRI) data have resurrected interest among cognitive neuroscientists in methods that may improve reliability in fMRI. Over the last decade, several individual studies have reported that modeling decisions, such as smoothing, motion correction and contrast selection, may improve estimates of test-retest reliability of BOLD signal estimates. However, it remains an empirical question whether certain analytic decisions consistently improve individual and group level reliability estimates in an fMRI task across multiple large, independent samples. This study used three independent samples (Ns: 60, 81, 120) that collected the same task (Monetary Incentive Delay task) across two runs and two sessions to evaluate the effects of analytic decisions on the individual (intraclass correlation coefficient [ICC(3,1)]) and group (Jaccard/Spearman rho) reliability estimates of BOLD activity of task fMRI data. The analytic decisions in this study vary across four categories: smoothing kernel (five options), motion correction (four options), task parameterizing (three options) and task contrasts (four options), totaling 240 different pipeline permutations. Across all 240 pipelines, the median ICC estimates are consistently low, with a maximum median ICC estimate of .44 - .55 across the three samples. The analytic decisions with the greatest impact on the median ICC and group similarity estimates are the Implicit Baseline contrast, Cue Model parameterization and a larger smoothing kernel. Using an Implicit Baseline in a contrast condition meaningfully increased group similarity and ICC estimates as compared to using the Neutral cue. This effect was largest for the Cue Model parameterization, however, improvements in reliability came at the cost of interpretability. This study illustrates that estimates of reliability in the MID task are consistently low and variable at small samples, and a higher test-retest reliability may not always improve interpretability of the estimated BOLD signal.

8.
Psychol Sci ; : 9567976241238217, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38652604

RESUMEN

Viewers use contextual information to visually explore complex scenes. Object recognition is facilitated by exploiting object-scene relations (which objects are expected in a given scene) and object-object relations (which objects are expected because of the occurrence of other objects). Semantically inconsistent objects deviate from these expectations, so they tend to capture viewers' attention (the semantic-inconsistency effect). Some objects fit the identity of a scene more or less than others, yet semantic inconsistencies have hitherto been operationalized as binary (consistent vs. inconsistent). In an eye-tracking experiment (N = 21 adults), we study the semantic-inconsistency effect in a continuous manner by using the linguistic-semantic similarity of an object to the scene category and to other objects in the scene. We found that both highly consistent and highly inconsistent objects are viewed more than other objects (U-shaped relationship), revealing that the (in)consistency effect is more than a simple binary classification.

9.
Sci Rep ; 14(1): 8713, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622187

RESUMEN

The concept of interval-valued intuitionistic fuzzy sets is intellectually stimulating and holds significant utility in the representation and analysis of real-world problems. The development of similarity measures within the class of interval-valued intuitionistic fuzzy sets possesses significant importance across various academic disciplines, particularly in the fields of decision-making and pattern recognition. The utilization of similarity measures is of utmost importance in the decision-making process when implementing interval-valued intuitionistic fuzzy sets. This is due to its inherent capability to quantitatively assess the level of resemblance or similarity between two interval-valued intuitionistic fuzzy sets. In this article, the drawbacks of the existing similarity measures in the context of an interval-valued intuitionistic fuzzy environment are addressed, and a novel similarity measure is presented. Many fundamental properties of this new interval-valued intuitionistic fuzzy similarity measure are also established, and the effectiveness of this similarity measure is illustrated by presenting a useful example. Moreover, a comparison is given to demonstrate the validity of the newly proposed similarity measure within the existing knowledge of similarity measures in the interval-valued intuitionistic fuzzy environment. In addition, an algorithm is designed to solve multi-criteria decision making problems by means of the proposed measure in the interval-valued intuitionistic fuzzy setting. Furthermore, this newly defined similarity measure is successfully applied to select an optimal renewable energy source to reduce energy crises. Finally, we conduct a comparative study to showcase the authenticity of the recently defined technique within the existing knowledge of similarity measures in the interval-valued intuitionistic fuzzy environment.

10.
Gigascience ; 132024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38626724

RESUMEN

BACKGROUND: The accurate identification of the functional elements in the bovine genome is a fundamental requirement for high-quality analysis of data informing both genome biology and genomic selection. Functional annotation of the bovine genome was performed to identify a more complete catalog of transcript isoforms across bovine tissues. RESULTS: A total of 160,820 unique transcripts (50% protein coding) representing 34,882 unique genes (60% protein coding) were identified across tissues. Among them, 118,563 transcripts (73% of the total) were structurally validated by independent datasets (PacBio isoform sequencing data, Oxford Nanopore Technologies sequencing data, de novo assembled transcripts from RNA sequencing data) and comparison with Ensembl and NCBI gene sets. In addition, all transcripts were supported by extensive data from different technologies such as whole transcriptome termini site sequencing, RNA Annotation and Mapping of Promoters for the Analysis of Gene Expression, chromatin immunoprecipitation sequencing, and assay for transposase-accessible chromatin using sequencing. A large proportion of identified transcripts (69%) were unannotated, of which 86% were produced by annotated genes and 14% by unannotated genes. A median of two 5' untranslated regions were expressed per gene. Around 50% of protein-coding genes in each tissue were bifunctional and transcribed both coding and noncoding isoforms. Furthermore, we identified 3,744 genes that functioned as noncoding genes in fetal tissues but as protein-coding genes in adult tissues. Our new bovine genome annotation extended more than 11,000 annotated gene borders compared to Ensembl or NCBI annotations. The resulting bovine transcriptome was integrated with publicly available quantitative trait loci data to study tissue-tissue interconnection involved in different traits and construct the first bovine trait similarity network. CONCLUSIONS: These validated results show significant improvement over current bovine genome annotations.


Asunto(s)
Perfilación de la Expresión Génica , Genómica , Bovinos/genética , Animales , Análisis de Secuencia de ARN , Transcriptoma , Sitios de Carácter Cuantitativo , ARN , Isoformas de Proteínas , Anotación de Secuencia Molecular
11.
J Neuroeng Rehabil ; 21(1): 58, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627779

RESUMEN

BACKGROUND: Identification of cortical loci for lower limb movements for stroke rehabilitation is crucial for better rehabilitation outcomes via noninvasive brain stimulation by targeting the fine-grained cortical loci of the movements. However, identification of the cortical loci for lower limb movements using functional MRI (fMRI) is challenging due to head motion and difficulty in isolating different types of movement. Therefore, we developed a custom-made MR-compatible footplate and leg cushion to identify the cortical loci for lower limb movements and conducted multivariate analysis on the fMRI data. We evaluated the validity of the identified loci using both fMRI and behavioral data, obtained from healthy participants as well as individuals after stroke. METHODS: We recruited 33 healthy participants who performed four different lower limb movements (ankle dorsiflexion, ankle rotation, knee extension, and toe flexion) using our custom-built equipment while fMRI data were acquired. A subgroup of these participants (Dataset 1; n = 21) was used to identify the cortical loci associated with each lower limb movement in the paracentral lobule (PCL) using multivoxel pattern analysis and representational similarity analysis. The identified cortical loci were then evaluated using the remaining healthy participants (Dataset 2; n = 11), for whom the laterality index (LI) was calculated for each lower limb movement using the cortical loci identified for the left and right lower limbs. In addition, we acquired a dataset from 15 individuals with chronic stroke for regression analysis using the LI and the Fugl-Meyer Assessment (FMA) scale. RESULTS: The cortical loci associated with the lower limb movements were hierarchically organized in the medial wall of the PCL following the cortical homunculus. The LI was clearer using the identified cortical loci than using the PCL. The healthy participants (mean ± standard deviation: 0.12 ± 0.30; range: - 0.63 to 0.91) exhibited a higher contralateral LI than the individuals after stroke (0.07 ± 0.47; - 0.83 to 0.97). The corresponding LI scores for individuals after stroke showed a significant positive correlation with the FMA scale for paretic side movement in ankle dorsiflexion (R2 = 0.33, p = 0.025) and toe flexion (R2 = 0.37, p = 0.016). CONCLUSIONS: The cortical loci associated with lower limb movements in the PCL identified in healthy participants were validated using independent groups of healthy participants and individuals after stroke. Our findings suggest that these cortical loci may be beneficial for the neurorehabilitation of lower limb movement in individuals after stroke, such as in developing effective rehabilitation interventions guided by the LI scores obtained for neuronal activations calculated from the identified cortical loci across the paretic and non-paretic sides of the brain.


Asunto(s)
Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Humanos , Movimiento/fisiología , Extremidad Inferior , Imagen por Resonancia Magnética
12.
Psychon Bull Rev ; 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38639836

RESUMEN

Real-world categories often contain exceptions that disobey the perceptual regularities followed by other members. Prominent psychological and neurobiological theories indicate that exception learning relies on the flexible modulation of object representations, but the specific representational shifts key to learning remain poorly understood. Here, we leveraged behavioral and computational approaches to elucidate the representational dynamics during the acquisition of exceptions that violate established regularity knowledge. In our study, participants (n = 42) learned novel categories in which regular and exceptional items were introduced successively; we then fitted a computational model to individuals' categorization performance to infer latent stimulus representations before and after exception learning. We found that in the representational space, exception learning not only drove confusable exceptions to be differentiated from regular items, but also led exceptions within the same category to be integrated based on shared characteristics. These shifts resulted in distinct representational clusters of regular items and exceptions that constituted hierarchically structured category representations, and the distinct clustering of exceptions from regular items was associated with a high ability to generalize and reconcile knowledge of regularities and exceptions. Moreover, by having a second group of participants (n = 42) to judge stimuli's similarity before and after exception learning, we revealed misalignment between representational similarity and behavioral similarity judgments, which further highlights the hierarchical layouts of categories with regularities and exceptions. Altogether, our findings elucidate the representational dynamics giving rise to generalizable category structures that reconcile perceptually inconsistent category members, thereby advancing the understanding of knowledge formation.

13.
J Xray Sci Technol ; 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38640141

RESUMEN

BACKGROUND: Projection Domain Decomposition (PDD) is a dual energy reconstruction method which implements the decomposition process before image reconstruction. The advantage of PDD is that it can alleviate beam hardening artifacts and metal artifacts effectively as energy spectra estimation is considered in PDD. However, noise amplification occurs during the decomposition process, which significantly impacts the accuracy of effective atomic number and electron density. Therefore, effective noise reduction techniques are required in PDD. OBJECTIVE: This study aims to develop a new algorithm capable of minimizing noise while simultaneously preserving edges and fine details. METHODS: In this study, a denoising algorithm based on low rank and similarity-based regularization (LRSBR) is presented. This algorithm incorporates the low-rank characteristic of tensors into similarity-based regularization (SBR) framework. This method effectively addresses the issue of instability in edge pixels within the SBR algorithm and enhances the structural consistency of dual-energy images. RESULTS: A series of simulation and practical experiments were conducted on a dual-layer dual-energy CT system. Experiments demonstrate that the proposed method outperforms exiting noise removal methods in Peak Signal-to-noise Ratio (PSNR), Root Mean Square Error (RMSE), and Structural Similarity (SSIM). Meanwhile, there has been a notable enhancement in the visual quality of CT images. CONCLUSIONS: The proposed algorithm has a significantly improved noise reduction compared to other competing approach in dual-energy CT. Meanwhile, the LRSBR method exhibits outstanding performance in preserving edges and fine structures, making it practical for PDD applications.

14.
Cognition ; 247: 105773, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38564850

RESUMEN

Charges of hypocrisy are usually thought to be to be damning. Yet when a hypocrisy charge is made, there often remains disagreement about whether or not its target really is a hypocrite. Why? Three pre-registered experiments (N = 2599) conceptualize and test the role of perceived comparability in evaluating hypocrisy. Calling someone a hypocrite typically entails invoking a comparison-one meant to highlight internal contradiction and cast moral character into question. Yet there is ambiguity about which sorts of comparisons are valid in the first place. We argue that disagreements about moral hypocrisy often boil down to disagreements about comparability. Although the comparability of two situations should not depend on whose behavior is being scrutinized, observers shift comparability judgments in line with social motives to criticize or defend. In short, we identify a cognitive factor that can help to explain why, for similar patterns of behavior, people see hypocrisy in their enemies but consistency in themselves and their allies.

15.
Cognition ; 247: 105788, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38579638

RESUMEN

In real-world vision, people prioritise the most informative scene regions via eye-movements. According to the cognitive guidance theory of visual attention, viewers allocate visual attention to those parts of the scene that are expected to be the most informative. The expected information of a scene region is coded in the semantic distribution of that scene. Meaning maps have been proposed to capture the spatial distribution of local scene semantics in order to test cognitive guidance theories of attention. Notwithstanding the success of meaning maps, the reason for their success has been contested. This has led to at least two possible explanations for the success of meaning maps in predicting visual attention. On the one hand, meaning maps might measure scene semantics. On the other hand, meaning maps might measure scene features, overlapping with, but distinct from, scene semantics. This study aims to disentangle these two sources of information by considering both conceptual information and non-semantic scene entropy simultaneously. We found that both semantic and non-semantic information is captured by meaning maps, but scene entropy accounted for more unique variance in the success of meaning maps than conceptual information. Additionally, some explained variance was unaccounted for by either source of information. Thus, although meaning maps may index some aspect of semantic information, their success seems to be better explained by non-semantic information. We conclude that meaning maps may not yet be a good tool to test cognitive guidance theories of attention in general, since they capture non-semantic aspects of local semantic density and only a small portion of conceptual information. Rather, we suggest that researchers should better define the exact aspect of cognitive guidance theories they wish to test and then use the tool that best captures that desired semantic information. As it stands, the semantic information contained in meaning maps seems too ambiguous to draw strong conclusions about how and when semantic information guides visual attention.

16.
Sci Rep ; 14(1): 9050, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643210

RESUMEN

Land is the foundation of human life and development, which is also the most important part of a country. The study of land carrying capacity is one of the important contents of land management, wherein the evaluation of land resource carrying capacity (LRCC) is an important reference for land resource planning. Aiming at the information fuzziness and uncertainty in the evaluation of LRCC, firstly, a comprehensive evaluation model based on entropy weight and normal cloud similarity was proposed, which is based on cloud model theory and combined with normal cloud similarity measurement method and entropy weight method. Secondly, taking the asphalt pavement experiment as an example for empirical analysis, the experimental results are consistent with the actual situation, which proves the feasibility and effectiveness of the proposed model. Finally, taking China's Chongqing city as the research area, the proposed evaluation model is used to study LRCC. The research results indicate that the comprehensive carrying capacity and average carrying capacity of various systems in China's Chongqing have been improved in the past decade. Among them, the comprehensive carrying capacity rose from the second level during the "12th Five-Year Plan" period to the third level during the "13th Five-Year Plan" period. In the future, it is necessary to focus on the improvement of soil and water resources system and economic and technological system. This conclusion reflects LRCC of Chongqing in China objectively and has a reference value for Chongqing's land planning.

17.
Expert Syst Appl ; 238(Pt D)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38646063

RESUMEN

Accurate and automatic segmentation of individual cell instances in microscopy images is a vital step for quantifying the cellular attributes, which can subsequently lead to new discoveries in biomedical research. In recent years, data-driven deep learning techniques have shown promising results in this task. Despite the success of these techniques, many fail to accurately segment cells in microscopy images with high cell density and low signal-to-noise ratio. In this paper, we propose a novel 3D cell segmentation approach DeepSeeded, a cascaded deep learning architecture that estimates seeds for a classical seeded watershed segmentation. The cascaded architecture enhances the cell interior and border information using Euclidean distance transforms and detects the cell seeds by performing voxel-wise classification. The data-driven seed estimation process proposed here allows segmenting touching cell instances from a dense, intensity-inhomogeneous microscopy image volume. We demonstrate the performance of the proposed method in segmenting 3D microscopy images of a particularly dense cell population called bacterial biofilms. Experimental results on synthetic and two real biofilm datasets suggest that the proposed method leads to superior segmentation results when compared to state-of-the-art deep learning methods and a classical method.

18.
Comput Biol Med ; 174: 108450, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38608325

RESUMEN

Magnetic resonance imaging (MRI) is a non-invasive medical imaging technique that provides high-resolution 3D images and valuable insights into human tissue conditions. Even at present, the refinement of denoising methods for MRI remains a crucial concern for improving the quality of the images. This study aims to improve the prefiltered rotationally invariant non-local principal component analysis (PRI-NL-PCA) algorithm. We relaxed the original restrictions using particle swarm optimization to determine optimal parameters for the PCA part of the original algorithm. In addition, we adjusted the prefiltered rotationally invariant non-local mean (PRI-NLM) part by traversing the signal intensities of voxels instead of their spatial positions to reduce duplicate calculations and expand the search volume to the whole image when estimating voxels' signal intensities. The new method demonstrated superior denoising performance compared to the original approach. Moreover, in most cases, the new algorithm ran faster. Furthermore, our proposed method can also be applied to process Gaussian noise in natural images and has the potential to enhance other NLM-based denoising algorithms.

19.
Comput Biol Med ; 174: 108379, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38631115

RESUMEN

OBJECTIVE: Blurry medical images affect the accuracy and efficiency of multimodal image registration, whose existing methods require further improvement. METHODS: We propose an edge-based similarity registration method optimised for multimodal medical images, especially bone images, by a balance optimiser. First, we use a GPU (graphics processing unit) rendering simulation to convert computed tomography data into digitally reconstructed radiographs. Second, we introduce the improved cascaded edge network (ICENet), a convolutional neural network that extracts edge information of blurry medical images. Then, the bilateral Gaussian-weighted similarity of pairs of X-ray images and digitally reconstructed radiographs is measured. The a balanced optimiser is iteratively applied to finally estimate the best pose to perform image registration. RESULTS: Experimental results show that, on average, the proposed method with ICENet outperforms other edge detection networks by 20%, 12%, 18.83%, and 11.93% in the overall Dice similarity, overall intersection over union, peak signal-to-noise ratio, and structural similarity index, respectively, with a registration success rate up to 90% and average reduction of 220% in registration time. CONCLUSION: The proposed method with ICENet can achieve a high registration success rate even for blurry medical images, and its efficiency and robustness are higher than those of existing methods. SIGNIFICANCE: Our proposal may be suitable for supporting medical diagnosis, radiation therapy, image-guided surgery, and other clinical applications.

20.
Heliyon ; 10(8): e29004, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38638957

RESUMEN

Future manufacturing scenarios will likely be built around cyber-physical production systems. To succeed, this new manufacturing paradigm will also have to comply with the golden rule of sustainability. However, the concept of sustainability as defined in a number of high-level policy documents and recommendations requires disambiguation. The paper introduces HITECS, a novel, context-independent text analytics methodology for hidden correlation analysis in documents. HITECS is based on the assumption that there is a strong link between a concept and the words implicitly chosen to explain it. The analysis is based on the combination of bare words frequency and cosine similarity, excluding trivial, first-level terms (titles, keywords, and definitions). Processing a corpus of generally accepted documents related to various definitions and requirements of sustainability unfolded their hidden correlations and some common key concepts. These results indicate that terms like access, inclusion, global, change, together with others like resource, share, and integration, are among leading concepts in the high-level documents discussing the requirements of sustainability. A similar analysis in the domain of cyber-physical production systems shows strong conceptual overlaps but also gaps indicating pathways for future research and actions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...